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Design and Implementation
of a Generic Framework
for Genetic Optimization

of Neural Networks

Neuronal networks in combination with genetic algorithms provide a
flexible method for solving various problems (Especially when we only can
define a fitness function for a solution, rather than giving a feasible, exact
solution). To be able to work with this concepts in an efficient way an
extensible, highly customizable framework is proposed.

This work starts with a short historical overview and then presents the
basic concepts of neuronal networks and genetic algorithms. Some more
advanced concepts like meta-evolution, genetic variance and parallel pro-
cessing of fitness evaluation will discussed. Those concepts may help to
improve the performance of the methods used in the framework. Some im-
portant features of the Neuronal Network and Genetic Algorithms (NNGA)
framework will be dealt with. The work will deal examine the performance
of the developed framework and propose some improvements. In the ap-
pendix the interested reader will find a short setup / user guide for NNGA.

i



Contents

1. Introduction 1
1.1. Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . 1
1.2. Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 2

2. Concepts 3
2.1. Neuronal Networks . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Artificial Neuron . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2. Neuronal Network . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Design Approach 7
3.1. Meta-Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Analysis of Genetic Variance . . . . . . . . . . . . . . . . . . . . 8
3.3. Parallel Processing of Fitness Value Evaluation . . . . . . . . . 9

4. Implementation 11
4.1. Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3. Remothe Method Invocation (RMI) capabilities . . . . . . . . . 12
4.4. Dynamic Class-Loading . . . . . . . . . . . . . . . . . . . . . . . 12
4.5. Extensible configuration system . . . . . . . . . . . . . . . . . . 12
4.6. Visualization and Export Functions . . . . . . . . . . . . . . . . 13

5. Results and Discussion 14

6. Conclusion 17

Bibliography 18

A. Setup Guide 19
A.1. System Requirements . . . . . . . . . . . . . . . . . . . . . . . . 19

A.1.1. Obtaining the Sourcecode . . . . . . . . . . . . . . . . . 19
A.1.2. Required Software for usage without Eclipse . . . . . . . 19
A.1.3. Required Software for usage with Eclipse . . . . . . . . . 20
A.1.4. Problems concerning the Heap Size . . . . . . . . . . . . 20

B. User Guide 21
B.1. Starting the Program . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



B.2. Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.3. Configuration system . . . . . . . . . . . . . . . . . . . . . . . . 22
B.4. Starting the Calculation . . . . . . . . . . . . . . . . . . . . . . 23
B.5. Export and Import . . . . . . . . . . . . . . . . . . . . . . . . . 23
B.6. Adding a new network type . . . . . . . . . . . . . . . . . . . . 24
B.7. Changing the considered problem . . . . . . . . . . . . . . . . . 24

iii



1. Introduction

This work will describe the concepts and the background which were relevant for
developing the Neuronal Network and Genetic Algorithms (NNGA) framework
software. This framework will be licensed under the Gnu Public License (GPL)
so that it’s easier for other people to do research in this field or to improve the
framework.

This framework tries to take advantage of two concepts:

• neuronal networks

• genetic algorithms

Although they seem to be completely different they have their origin in com-
mon: Both concepts were inspired by nature. Together those two concepts can
be used to solve various problems.

Neuronal networks are a quite old concept. Their concept was introduced
by McCulloch and Pitts in 1943. The article can be found in [MP43]. Donald
Hebb published his idea of learning neurons in 1949 [Heb49]. In 1958 Rosenblatt
proposed the model of the perceptron. Many other researchers based their work
on those articles.

Genetic Algorithms were inspired by evolution. For historic information on
genetic algorithms this work refers to [Fog00] (chapters 3.5 and 3.6).

So we can see that neuronal networks and genetic algorithms are a powerful
combination for optimizing and evolving neuronal networks.

The aim of the developed software is to provide a possibility to work with
those two concepts in a easy and flexible way. Thereby other researchers can
easily test their modifications and check if they bring an advantage. Some ideas
which can be integrated into the framework will be discussed later. The NNGA
framework can be used to develop strategies or control software for problems
which are difficult to calculate. Even in the research field of real time systems
neuronal networks can help solving complex problems.

1.1. Motivation and Objectives

The goal of the Project is to provide a framework which can be used for research.
It will be easy to integrate new features or modify existing ones. Features that
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1 Introduction 1.2 Structure of the Thesis

have not been implemented yet will be easy to implement later. This work will
also describe the concepts used in NNGA framework so that the reader is able
to use it afterwards. The framework can be used to develop game strategies
for many different game types. Results gained from work with the framework
can be integrated in robot control software. These are only two of countless
other examples which show that the framework can be used for different types
of research.

1.2. Structure of the Thesis

The thesis is structured as follows: Chapter 2 gives an introduction into neural
networks and genetic algorithms which are implemented in the NNGA frame-
work.

Chapter 3 will discuss the used libraries, the design and the ideas behind the
program.

Based on this design Chapter 4 will describe the implementation, the imple-
mentation problems and how these problems were solved.

In Chapter 5 the results of some performance tests will be shown and dis-
cussed. Furthermore some possibilities to increase performance will be talked
about.

Finally, the thesis ends with a conclusion in Chapter 6 summarizing the key
results of the presented work and giving an outlook how the NNGA framework
can be extended and improved.

A setup guide and a user guide can be found in the appendix.
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2. Concepts

In this chapter we will give an overview of the concepts of neuronal networks
and genetic algorithms which will later be needed to implement the framework.

2.1. Neuronal Networks

This section will provide an introduction in artificial neurons and neuronal
networks. This knowledge is essential to be able to modify the program in a
proper way. More detailed information on the features of the framework will
be given in the next chapter.

2.1.1. Artificial Neuron

In consideration of the fact that artificial neurons are inspired from biologic
neurons it is a good idea to take a closer look on the biologic version first.
Figure 2.1 shows a neuron cell of a vertebrate.

Figure 2.1.: Neuron cell: (1) is the cell body, (2) are dendrites leading to the
cell and (3) is the axon leading output signal to other neurons.

Now we need to develop a mathematical model to be able to calculate like
a neuron cell. We can describe a neuron as an n-ary function which maps n
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2 Concepts 2.1 Neuronal Networks

inputs to one output. x1 × x2 × . . .× xn 7→ o where x1, . . . , xn, o ∈ R. Usually
an activation or transfer function ϕ is applied to the output. This function for
a given neuron k can be defined as following:

ak = ϕ(
n∑

j=0

wkjxk)

Where ak is the output of the activation function, wkj is the weight of the input
from node j for the node k, xk is the input from node k and n is the number
of neurons. The output of a single neuron can be the input for other neurons
or build the output of the network.

In order to make this model more flexible we introduce a bias value. The
introduction of the bias changes the formula slightly:

ak = ϕ(bk +
n∑

j=0

wkjxk)

Here bk determines the bias for a neuron k. The bias can also be interpreted as
a neuron with constant output. With this we have found a quite appropriate
model for a biologic neuron. The next step is to connect them in order be able
to perform calculations.

2.1.2. Neuronal Network

With this model of a neuron we have a powerful tool to perform calculations.
To make more difficult calculations possible it is necessary to build a network
of single neurons. In the current implementation fully connected neuronal
networks are being used. This means that each single neuron is connected to
every other neuron directly. If we consider the neurons as nodes and their
connections as arcs, a completely connected neuronal network can be seen as
a complete directed graph. For many purposes some of the connections can be
removed to reduce the calculation time. This can easily done in the framework
by changing a few methods. We will discuss the required changes later in detail.

Having build up an artificial neuronal network we want this network to cal-
culate values in a previously specified way. This is a quite hard job if we
consider games like tic-tac-toe or our variant of a capture-the-flag game. The
use of genetic algorithms makes this customization of the neuronal network
more feasible.
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2 Concepts 2.2 Genetic Algorithms

2.2. Genetic Algorithms

Genetic algorithms are a technique for finding approximate solutions for various
problems. Most of those problems are in the category of search or optimization
problems. The genetic algorithms are a subclass of evolutionary algorithms.
The idea for evolutionary algorithms which try to resemble evolution in nature
comes from biology. It is obvious that those algorithms cannot outreach specific
algorithms but what they can do is to provide a good approximation. In many
real-world problems a good approximation is sufficient.

But what are the special characteristics of a genetic algorithm? And where
is the connection between neuronal networks and genetic algorithms?

Genetic algorithms use well-known concepts such as inheritance, mutation,
crossover and selection. A genetic algorithm works on a population of individu-
als and generates starting from an initial generation G0 one or more descendant-
generations Gn where n > 0. In practice the initial generation is a population
of individuals initialized with random values. To simulate selection the algo-
rithm builds up a ranking using a so called fitness function and replaces the
rather worse individuals by new generated individuals. The choice of an appro-
priate fitness function is crucial. An inappropriate fitness function would lead
the evolution in a wrong direction. Aside from the fitness function some other
parameters for the genetic algorithm are also important. Those parameters de-
fine, e.g., which percentage of the population should be replaced or how often a
crossover should happen. There is of course a quite big number of parameters
which can be used to ”customize” the genetic algorithm.

Irrespectively of the parameters other customizations are possible: It is for
instance also possible to enable a crossover between the individuals of different
populations. For more information on genetic algorithms beyond that what is
discussed here we want to refer to [Fog00].

Now we will consider the ideas and problems of the genetic algorithm which
is used in the framework. A more detailed description can be found in [EK07]
(section 5).

First we have the concept of elite selection. This means that we select the
networks with the best score. They will ”survive” until the next iteration.

Then, with random selection some randomly selected, quite good networks
(according to the score) will ”survive” too. This is important because otherwise
the diversity of the population would decrease to fast.

Mutation, which causes rather small changes, is applied to some of the net-
works to generate slightly changed networks. If the change was advantageous
the network will stay in the population, if not it is likely that it will be re-
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2 Concepts 2.2 Genetic Algorithms

moved. The networks which will be mutated are randomly selected from the
whole population.

Random Creation ”generates” new networks with random configurations.
Those new networks will replace the networks having a poor score in the next
iteration.

Moreover, the idea of Crossover is very important but not easy to handle.
The basic idea is to have several populations which evolve independently. After
some time offsprings, which have qualities of individuals from (at least) two dif-
ferent populations, are created. Another idea is the intra population crossover:
Here some parts of the networks are exchanged within a single population. The
choice of the frequency of the inter population crossover is a crucial setting.
A good setting is very important for good results. An idea to overcome the
problem of finding optimal settings is the concept of metaevolution. We will
discuss this in the next section.

The interested reader is referred to [EK07] where those ideas are discussed
in detail and where the concepts (implemented in NNGA were applied to build
a control system for a mobile robot.

Equipped with those powerful ”tools” we can take a closer look at the features
and the implementation of the NNGA framework.
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3. Design Approach

Now after we have dealt with the concepts which were relevant for the NNGA
framework, we will consider some design ideas which provide a basis for some
possible extensions of the framework. (Those features were not fully imple-
mented until the release of this work.) However, some ideas of the distributed
evaluation (via RMI) were used in the interface to the robot simulator used in
[EK07].

In this section we will deal with some interesting concepts which can be useful
when working with neuronal networks and genetic algorithms. First we will
illustrate the idea of meta-evoluation which helps finding optimal parameters
for the Genetic Algorithm (GA). Then analysis of genetic variance will be
presented. Afterwards we will deal with parallel processing of fitness evaluation.

3.1. Meta-Evolution

This concept defines an optimization of the parameters of the genetic algorithm
like the mutation rate, the percentages of individuals to be kept/mutated/re-
arranged through a cross-over, etc. Optimal values for these parameters are
quite hard to find in general and depend often on the respective problem. Meta-
evolution uses the information gained by the evaluation phase to optimize the
parameters of the genetic algorithm. As the evaluation data are also needed
by the genetic algorithm this concept needs just a little extra effort.

Each population has an independent parameter set that is evaluated by the
change of the overall fitness function of the population’s individuals over several
iterations. The overall fitness function of the population’s individuals will be
calculated as the average of the top 25% individuals. The evaluation is done for
the interval between two inter-population cross-overs by making a regression
analysis of the overall fitness function and extrapolating the result by one inter-
population cross-over interval into the future. Figure 3.1 shows an example
of an evaluation of three populations. The dotted lines mark the estimated
development of the population.

After evaluation, the configuration of the worst performing population will
be overwritten by a copy of the configuration of the best performing population.
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3 Design Approach 3.2 Analysis of Genetic Variance
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Figure 3.1.: Extrapolation of the evaluation result

Then the parameters of all but the best performing population are modified
using a random mutation (also the copied configuration will be mutated).

Then, after the inter-population cross-over, the evaluation cycle restarts.

3.2. Analysis of Genetic Variance Among
Individuals and Populations

Our hypothesis is that the partitioning of individuals into several populations
keeps a greater variety among the individuals then having a single large pop-
ulation. In order to prove this hypothesis it is necessary to keep track of the
variance among individuals and the variance between individuals of different
populations.

Let σ2
i [k] be the variance of the k-th parameter (e.g., weight of a neural

connection) of the top 25% individuals in the population i. Then σ̄2
i denotes

the average variance within population i.

Furthermore, let σ2
ij[k] be the variance of the k-th parameter of the top 25%

individuals in population i or k and σ̄2
ij denote the average variance within the

two populations i and j.

Then, a value of
σ̄2

ij√
σ̄2

i ·σ̄2
j

denotes the correlation between the two populations

i and j.
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3 Design Approach 3.3 Parallel Processing of Fitness Value Evaluation

3.3. Parallel Processing of Fitness Value
Evaluation

Many problems, e.g., the simulation of a mobile robot’s behavior in a virtual
environment, require considerable computation time in order to derive a fitness
value for a given neural network. Each simulation consists of several steps
and in order to get a dependable value it is necessary to repeat an experiment
several times with different environmental starting conditions.

An example for a very time-consuming fitness evaluation is the simulation
of a virtual environment with a mobile robot controlled by a neural network
behavior. Even when using a faster-than-real-time simulation, the actual cal-
culation time for a fitness function is in the order of seconds. Considering
several populations with overall 100 individuals, the time for a single iteration
is several hundreds of seconds, not to think of the time for 1000 iterations.
By utilizing multiple computers and CPUs, this time can be easily cut down
because the evaluation of the individuals within one iteration are independent
and can be fully parallelized.

We assume that we have available a pool of PCs which are connected to
the Internet. The average processing speed is assumed to be different, as it
is the case with the operating system and the number of CPUs. Moreover,
some of the PCs may be only available for a limited time, e.g., during night.
These computers will run a fitness evaluation server that is able to calculate
the fitness value for a given individual on request.

Our approach for parallel processing involves a main application that pro-
vides a user interface and performs the genetic optimization (mutation, cross-
overs, ...) over all individuals. However, for evaluation, an individual’s config-
uration, i.e., the weights of the neural network, are transferred to one of the
currently available fitness evaluation servers. After the fitness evaluation server
has been instructed, the configuration of another individual is send to the next
currently available fitness evaluation server. After evaluation, the fitness eval-
uation server returns the result and is given a new task. After having collected
all the necessary fitness functions for one iteration, the genetic algorithm is
applied and the next iteration is initiated.

If a server takes considerably long to report its result, the server is probed
for a life sign message. If there is no life sign message it is assumed that the
server has been shut down and the evaluation task is re-issued to another avail-
able server. The computer running the main application may also run a local
server in order to utilize its processing power in a more efficient way. Multi-
core or hyper-threading systems may run several servers in order to optimize
utilization.
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3 Design Approach 3.3 Parallel Processing of Fitness Value Evaluation

Figure 3.2.: Main Application and Fitness Evaluation Servers

In figure 3.2 the scheme of the fitness evaluation is shown.

Of course this strategy only makes sense if the evaluation function is difficult
to calculate (and if the whole evolution procedure is intended to run over longer
period). In this case the overhead for the distribution of the evaluations pays
off.
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4. Implementation

This chapter deals with some important implementation details of the NNGA
framework. The information given in this chapter might be useful for those
who plan to extend the framework.

The NNGA framework is implemented in Java. Therefore a Java Develop-
ment Kit (JDK) compatible to version 1.5.0 is needed.

Some important features are:

• Persistence via XML

• Merging networks from other populations into others

• Basic RMI capabilities

• Dynamic class-loading (reflection-API)

• Extensible configuration system

• Various visualization and export functions

4.1. Persistence

Persistence belongs to the key-features as it is very important to store some
states of one population. This feature comes out to be essential when tuning
so parameters. It is also possible to save the whole system state or to define
a interval for automatic backups. It has shown that those automatic backups
are very useful when the software is performing longer calculations.

4.2. Merging

Sometimes it is a good idea to merge some networks of different populations
to achieve a faster ”development” of the networks. This is also possible with
NNGA. Networks or whole populations can be imported into others. When
importing networks into a population only the fittest networks will survive the
next iteration (according to the selection of the GA). In NNGA this feature
and the persistence system are closely connected.
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4 Implementation 4.3 RMI capabilities

4.3. RMI capabilities

During the development a request for RMI access occurred. It has shown to
be a useful feature as well. With those (at the moment basic) RMI capabilities
e.g. a robot simulator can provide the simulation feedback used in the GA
to determine the current fitness. By using RMI it is not necessary that robot
simulator and Main System are executed within the same Java Virtual Machine
(JVM). As long as they are connected via a local area network or the internet
they can interoperate in almost the same way. Even without knowing RMI
very well it should be possible to write programs which communicate with the
master system via RMI.

4.4. Dynamic Class-Loading

If the problem changes, which is used to train a network (or the idea of a slightly
modified problem appears), it is very likely that the user will implement another
problem class. With the dynamic class-loading it is possible to use classes which
were just compiled without the need for restarting the whole system. So it is
only necessary to put the fresh class into the classpath (so that it can be found
by the JVM) and to set a configuration variable. In later time this feature will
be available for networks, problems and many other important classes.

4.5. Extensible configuration system

This is one of the most important features. With help of the extensible config-
uration system it is possible to introduce set and modify different parameters
used in the software. The configuration values are automatically stored in the
state. So after adding no additional programming effort is needed. The new
parameter can be used immediately (and is shown in the configuration Graph-
ical User Interface (GUI) as well). Currently the following configuration value
types are available.

• STRING

• INT

• LONG

• FLOAT

• BOOLEAN

• CINT (constant INT)

12



4 Implementation 4.6 Visualization and Export Functions

We want to point out that it is quite easily possible to extend this set of
types by other desired types. The only condition is the availability of the new
type in Java. Some examples concerning the usage of the configuration system
will be presented in the userguide (section B.3).

Configuration entries can be identified via ”URL”-like strings. Those string
resemble internet domain entries - just the reverse direction. The whole config-
uration forms a configuration tree. The leaves of this tree are the configuration
entries. E.g. nn.nodes denotes an (INT ) entry which stands for the number of
nodes in a single neuronal network.

4.6. Visualization and Export Functions

Another important topic are the export and visualization features. One pos-
sibility is to use some XML tools to extract the information from the saved
state. But this might be too time-consuming to be used everytime when the
user wants to know how the populations are developing. Therefore some vi-
sualization features generating development diagrams were implemented. In
Section 5 we will show some Figures (Figures 5.1, 5.2 and 5.3) generated by
this Visualization feature. (Those figures are screenshots which were taken
from NNGA). It is also possible to export those fitness development data as
Comma Separated Values (CSV) file. So it is possible to import the date easily
into other tools or statistical software.
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5. Results and Discussion

Although, NNGA is written in Java it is performing quite good on modern
systems. In our experiments it has shown that after a few hundred iterations
the fitness increase slows down. (Using some standard problems like the capture
the flag game and fully connected networks) Therefore it is a good idea to merge
two different networks after some hundred iterations. Then another iteration
cycle will bring better results.

In table 5.1 a performance benchmark on an AMD Athlon 64 3500+
(2.21Ghz) with 1 gigabyte ram is shown. The problem was the capture the
flag problem using 4 populations with 80 fully connected networks (with 6
nodes) and an inter-population crossover every 10 iterations. An average speed
of roundly 188 iterations per minute was achieved, which is feasible for many
applications.

Here we will describe the problem, which was used in the evaluation: The
aim in the capture the flag game is to reach the middle of the field (i.e. the
goal), performing as few steps as possible. The complicated part is that the
player is being hunted by a guard. If the guard reaches the player, then the
game is lost. In the evaluation, the player starts in the outer regions while
the guard starts close to the goal. To improve the situation for the player, the
guard is a little bit slower. (The player performs 4 steps while the guard can
only perform 3 steps)

Iterations Time needed
(in seconds)

Iterations
per minute

50 16,328 183,733
100 31,015 193,455
150 47,406 189,849
200 65,250 183,908
250 79,953 187,610

Table 5.1.: Performance Benchmark of NNGA

Now we take a look at the development of the best population (again, we
consider the capture the flag problem with the above setting).
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5 Results and Discussion

Figures 5.1, 5.2 and 5.3 show the fitness diagram of the best population after
50, 100 and 150 iterations. The scores of the best population is drawn in red,
while the population average is drawn in blue. In this example it can be seen
that the improvement of the performance slows down gradually.

It has to be mentioned that runtime of the evaluation function is the bigger
part of the whole runtime. Moreover, the evaluation function is much more
often executed that the genetic algorithm. Clearly the evaluation function is
heavily determined by the problem which is being considered. This means
that the choice of the problem (and in consequence the evaluation function)
determines the overall performance in large parts. Therefore, it is quite difficult
to measure the performance of the framework. Nevertheless, this example
should give at least a feeling of the abilities of NNGA.

One way to increase the performance is to use other network types than
fully connected networks or to tune the GA. Another possibility is searching
for subnets of a single network which calculate a constant or a constant plus an
offset. This subnetwork can be replaced by a single node which calculates this
value. This will decrease the calculation time but also interfere with the GA.
Therefore, this method only makes sense after the network has been brought to
a reasonable performance level. There are - of course - many other possibilities
to increase the performance. The last two examples shall motivate (and inspire)
the interested reader to experiment with NNGA.

Figure 5.1.: The development of the best population within 50 iterations
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5 Results and Discussion

Figure 5.2.: The development of the best population within 100 iterations

Figure 5.3.: The development of the best population within 150 iterations
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6. Conclusion

We have dealt with the basic concepts of neuronal networks and genetic algo-
rithms in order to provide a basis for the introduction of the NNGA framework.
Some interesting concepts like meta evolution, variance among individuals and
whole population and parallel processing of fitness evaluation were discussed.
This work presented some ideas how those concepts could work together with
NNGA.

Then we have seen implementation details and some interesting features and
we have enumerated some interesting features which were not implemented un-
til now. NNGA helps evaluating, testing and working with different types of
neuronal networks and genetic algorithms. So it is not longer necessary that
some general parts need to be re-implemented every time. A framework provid-
ing various features like persistence, visualization and distributed evaluation is
ready to use. Anyway it is important to note that users of NNGA should know
at least basics of programming in order to be able to extend it in a reasonable
way.

Furthermore we have looked at the performance of the framework on cur-
rently used ”standard” computers. It has turned out that NNGA is quite
efficent and some possible improvements were discussed.

Still further development is possible and we hope that NNGA will be ex-
tended in the near future.
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A. Setup Guide

This guide will help the user to get a executable version of the nnga environ-
ment.
There are two ways to run the framework:

• Using the program without Eclipse

• Using the program with Eclipse

If the user wants to adopt the program it is recommended to use it with Eclipse.

A.1. System Requirements

The program requires for execution a Java 1.5 compatible environment. It has
been tested with Sun Java 1.5.0 08 and Eclipse Java Compiler.

A.1.1. Obtaining the Sourcecode

For obtaining the source code it is the best idea to write an email to the
supervisor or the author of this work. The current email addresses can be
looked up using http://whitepages.tuwien.ac.at.

We can provide either a current snapshot of the program (including the
sourcecode) or (if needed) svn access.

A.1.2. Required Software for usage without Eclipse

Those who don’t want to use Eclipse need at least a Javacompiler. It’s much
easier if Ant is available. Ant is a make for Java Programs. It can be obtained
from http://ant.apache.org/. With Ant installed the user just changes to to
source root directory and types ant to compile the program. In the build.xml
are various other targets. Those targets are comparable to the make targets.
There are targets to build a jar archive with the compiled program inside and
to build the javadoc documentation.

19



A Setup Guide A.1 System Requirements

A.1.3. Required Software for usage with Eclipse

Obviously Eclipse is needed. It can be downloaded from http://www.eclipse.

org/. Because Eclipse is a quite large program it’s better to download it from
a near mirror. For those who are in the area of the Vienna University of
Technology the URL would be: http://gd.tuwien.ac.at/softeng/eclipse/

It is strongly recommended to use the subclipse plugin in combination with
eclipse to make the svn-checkout more convenient.

If the user plans to build or change the GUI it’s a good idea to install the
Visual Editor. The Visual Editor is also an eclipse plugin which can eas-
ily installed. Just select in Eclipse: Help > Software Updates > Find and

Install. Now the user selects Search for new features to install and
after selecting the Callisto site the Download of Visual Editor is possible. Other
plugins can be downloaded following this procedure as well.

A.1.4. Problems concerning the Heap Size

If the XML export function is used with large datasets it is possible that a
OutOfMemoryError will occur. The GUI will prevent the application from
terminating and just show the error message. The reason for this error is that
the jdom library, which is used for the XML import/export as lower layer, uses
the whole heap memory of the JVM. This results in a OutOfMemoryError.
Fortunately this error can easily be avoided: The user just has to increase the
heap memory size to a value around 256MB. For the Sun JVM the parameters
are: -Xms64m -Xmx256m -Xms??? sets the amount of heap memory which is
reserved during the startup of the JVM and -Xmm??? sets upper limit for the
size of the heap memory. Using those parameters a startup could look like
user@foo:~$/NNGASvn java -Xms64m -Xmx256m TestGUI.
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B. User Guide

This user guide explains how to get NNGA running and what startup param-
eters could be used (e.g. in scripts).

Moreover we provide a short introduction into the usage of the configuration
system and explain how the sourcecode can be modified in order to add a new
configuration parameter.

B.1. Starting the Program

Provided that the program was compiled and set-up correctly, it can be started
by changing to the main source directory and typing the command java

TestGUI. If the program was compressed to a .jar file it can be started by
simply double-clicking on the file or by typing java -jar ??? (where ???
stands for the name of the .jar file). If needed it is possible to append the
arguments to this call. Those arguments will be passed to the started program.
The currently implemented options are:

• -f <filename> This argument makes the program to load it’s state from
the given XML file at startup. This feature helps to simplify startup
scripts.

• -r <filename> Given this argument the program loads it’s state as de-
scribed for the -f <filename> option. In addition it starts an unlimited
calculation. This option can build the base for a watchdog script.

Of course it is also possible to use NNGA within eclipse. Sometimes it is
very useful to use the debugger or the version control features of eclipse when
working with NNGA. For questions concerning the use with eclipse we refer to
the eclipse documentation (available on the eclipse project page or within the
help menu of eclipse).

B.2. Main Menu

A few moments after starting up the program the main menu will appear.
Figure B.1 shows how the main menu will look like.
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Figure B.1.: The main menu

All main features can be controlled from this menu.

B.3. Configuration system

The configuration system provides a central facility for different sorts of param-
eters. Persistence is provided for the parameters as well. Different parameter
types reduce the risk of erroneous/unwanted changes. We will show how to
introduce a new value and how this new value can be used in the framework.

All initial (non problem-related) parameters are stored within NNGAConf
class in the variable protected String[][] ivalues. To add a new param-
eter e.g. ”backup.fileextension” of type STRING it is only necessary to add a
line {"backup.fileextension","STRING",".bck"}. Here .bck stands for the
initial value of the new parameter ”backup.fileextension”.

Now the new parameter can already be used. To get the current value the
following method call is needed: conf.getValue("backup.fileextension")

(Provided that conf is a reference to the NNGAConf instance).

Setting a parameter to a new value works analogously: The method call
conf.setValue("backup.fileextension",".newbck") sets the parameter to
a new value.

If the NNGA state is stored or loaded, the system configuration is automat-
ically stored or respectively loaded as well.
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B.4. Starting the Calculation

There are two possibilities to start the calculation: With or without iteration
limit. If an iteration limit is set then the calculation will stop as soon as the
limit is reached. In the other case (i.e. Iteration without limit) the calculation
will continue until a stop is requested by the user. It is recommended to enable
the automatic backup system via the backup.* configuration variables. So
almost no data will be lost if the program is interrupted while the calculation
is running.

B.5. Export and Import

NNGA supports various import and export functions. First it should be men-
tioned that it is possible to export the development data of all populations as
a CSV file. This can be useful if the user wants to analyze the data with some
external program.

The other Export/Import functions use XML files. The first possibility is
to export (or import) the whole program-state. This can be done by using the
floppy-disk symbols in the toolbar. This action will export the program state
and the configuration - i.e. it will run the XML export method in the World
and in the NNGAConf class. This is especially useful for making snapshots of
the current work. Note that the automatic backup uses exactly these functions.

The second possibility is to export only some of the populations. So it is
possible to import previously saved populations into the system. Moreover,
the user can import single networks from a previously saved population into
an existing one. In this case the user must decide whether the population size
should be increased or not. If the population size stays the same, the population
will remove the worst ones of the surplus individuals after the next evaluation.

Note that no additional code change is needed if a new configuration param-
eter was introduced. The NNGAConf will export (import) every stored value.

It is recommended to set the history export configuration parameters to
feasible values. Otherwise, the XML filesize could become very large.
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B.6. Adding a new network type

Integrating a different network type into the system is quite easy (although
some knowledge of programming and the code is required):

• First a new network class implementing the INetwork interface must
be implemented. (The CompleteNetwork class could serve as a kind of
”prototype” - Just copy the file and change what is needed.) Check
whether the currently active problem algorithm supports this kind of
network.

• Compile and test the new class. Then copy it into the NNGA source
folders.

• Change the nn.classname configuration value to the complete classname
(including packages!)

• Start NNGA.

In principle it should be possible to change the network class while the pro-
gram is running. (However, it is required to reinitialize all populations and that
the problem is compatible with the new introduced network class) Maybe some
view modes are not applicable if they are not supported by the new network.
If problems of this kind occur, check the network implementation.

B.7. Changing the considered problem

The steps required to change the problem are quite similar to those needed for
changing the network class. However, this change is a little bit more difficult.

• First a new problem class implementing the IProblem interface must be
implemented. Take a look at the CTFProblem class to get an idea how
the methods could be implemented.

• Compile and test the new class. Then copy it into the NNGA source
folders.

• Check whether the currently active networks work together with this new
problem.

• Change the class-names and constructors in the NNGAMainFrame class to
match the new problem.

• Start NNGA.

Of course a problem change is a quite major change. Clearly the problem
evaluation visualization (i.e. replay) will very likely not work. The most impor-
tant changes will be in evaluateNet, since this method controls the evaluation
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of the network configurations (and assigns the score). A possibility to change
the problem without changing code is planned in future releases. The same
holds for the problem evaluation visualization. At the time it is recommended
to keep several branches of NNGA in the SVN repository. Every branch holds
a kind of problem. Tuning or slightly adopting a problem is possible by using
some new introduced configuration values. (Quite analogously to the various
different crossover methods used in the GA)

Now the user is familiar with the basic operations of NNGA. This userguide
was intended to overview the features. The other features - not explained here
- are rather self explaining.
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